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abstract

An optimal control formulation of the problem of collision avoidance of mobile robots in

environments containing moving obstacles is presented. Collision avoidance is guaranteed if

= the minimum distance between the robot and the objects is nonzero. A nominal trajectory

is assumed to be known from off-line planning. Tile main idea is to change the velocity

along the nominal trajectory so that collisions are avoided. Furthermore, time consistency

with the nominal plan is desirable. A numerical solution of the optimization problem is

obtained. Simulation results verify the value of the proposed strategy.

1 Introduction

The problem of "moving a mobile robot or a manipulator from an initial position of the

workspace to a final one, avoiding the stationary obstacles of the environment and opti-

mizing over certain criteria while satisfying the kinematic and dynamic constraints of the

robot", is well known to be formidable due to its NP-complete computational complexity

[Ca 86].
Undoubtedly, the more complex version of the problem where moving obstacles are

present (figure 1) in the environment is even more difficult and computationaUy expensive.

The problem of treating moving objects has been stated as early as 1984 [FH84] and usually

ad hoc solutions were given [Le89] [Tou86]. Reif and Sharir [RS85] gave an algorithmic

solution to the problem but they were restricted to some categories of shapes of objects.

and their approach is not suitable for an on-line implementation. On the other hand, Kant

and Zucker [KZ84], [KZ86], [KZ88], used the decomposition of the motion plannlng problem

to the find-path, and move-along-path problems, they propose that the avoidance of moving

obstacles can be done by adjusting the motion along the geometric path. The same approach

was adopted in [WJ88], and recently in [GEg0]. The basic idea of this approach is utilized

in this work. Our scheme is more general and complete in the sense that the dynamic

model of the robot is used, the objects are modeled as convex polyhedra and, in addition to

collision avoidance, time consistency with the nominal plan is sought. Lately search based
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Figure 1: Environment with a mobile robot and multiple moving obstacles

approaches for solving the above problem have also been presented in [FS90],[SLG90].

To facilitate a fast solution a hierarchical decomposition has been proposed [KZ88], and

adopted and extended in our work. The problem is divided in two:

• Off-line Path and Motion Planning, and

• On-line Motion Replanning.

In the off-line stage, two problems are solved: First, path planning, the "find path"

problem, ie the search for a connected curve r(s) = [p,(s) py(s)] T and an associated ori-

entation function #(s), where s is the trajectory parameterization variable, in the robot's

workspace, connecting the initial and target points without colliding with the stationary

objects while satisfying certain criteria. Second, motion planning, the problem of how to

move along this path without violating the kinematic and dynamic constraints of the robot,

and some performance criterion (e.g time) is minimized.

The subject of this paper is the development of an algorithm for the on-line stage.

This algorithm has to act in a supervisory mode during motion execution in order to avoid

collisions with moving obstacles with which collision is predicted based on sensory input.

The new plan must satisfy the dynamic constraints and stay as close as possible to the

nominal plan.

In our previous developments [KS90b] [KS91] the Minimum Interference Strategy (MIS)

wa_ proposed to give fast, feasible and close to optimal solutions. In this work, the Optimal

Control Strategy (OCS) is proposed to give optimal solutions of the problem at hands.
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In section 2 the preliminary definitions altd the problem are stated. The theoretical

analysis and the presentation of OCS is done in section 3. Finally, in section 4 simulation

results and suggestions for future research are presented.
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2 Definitions - Assumptions - Modeling

Collision avoidance is guaranteed if the distance d(s,t) [GJ85] between the robot and the

object is greater than a safety positive constant d °, i.e

d(s,t) = min{lizl - zjlI : zi E C_(s),zj E Co(t)} >_ d ° Vs,t (1)
1,3

where

C,(s) = {xlx E _3 9 A_.R-Tl(s).x <_ b,-.l,.R-Tl(s).T,(s), A, E _mX3,b_ E _m}, (2)

Co(t) = {yly E _3 b Ao . R_-l(t).y <_ bo -Ao . R[i(t) . To(t), Ao E _t×3,bo E _l}, (3)

are convex polyhedra representing the convex hulls of the mobile robot and the mov-

ing obstacle respectively. (A,,b_) and (Ao,bo) are the parameters that define the convex

polyhedron description of the robot and the object respectively, with respect to their fixed

coordinate frame. R_,Ro,T,,To represent the rotation and translation of the frames of the

robot and the object with respect to the world frame. A computationally efficient approach

to estimate d(s,t) and predict the collision time t_ under uncertain input from sensing

devices is presented elsewhere [KS90a]. The collision time is defined by

t¢ = inf {t/d(t) = 0} (4)
tE[t0,t0+Th]

where to is the present time, and Th is the time horizon of interest.

The proposed approach works if the following assumption is satisfied.

Temporary Obstruction Assumption: The mobile robot moving along path r(s)

can only he obstructed during a bounded amount of time i.e the moving object is assumed

not to permanently stay on, or move parallel to r(s).

The problem of planning the motion of the mobile robot such that it avoids the moving

obstacles while minimizing deviations from the nominal final time can be posed as an

optimization problem. The mathematical statement of the problem and the derivations of

the dynamic model and the constraints has been presented in [KS90b] [KS91].

System

x'(s) = A(x(s)) + B(x(s)) . u(s)

where (.)' = -_, x(s)= it(s) v(s)] T, with v(.._)= _(s),

A(z) = -I.f(+). ) .v(s)
m+/.S (_)

(5)

(6)
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Initial-Final Conditions

[ o ]B(_) = , , (7)
m+tf_(_) "

• (so) = [0 ,0]r x(sf) = [free_S]r (8)

input constraints

State Constraints

Collision Avoidance Constraints

-y;< _(s) _u1 (9)

o < e g v(_) _ v_,ob(s) (10)

do - d(s.t) < 0 (11)

Performance Criterion

= 2(t(sf) - T) 2 (12)J

where s is the trajectory parameterization variable, t(s), v(s) are the time and the velocity

when mobile robot is at point s of the trajectory. I is the moment of inertia around the

center of translation, f(s) is the curvature of the cartesian trajectory r(s), ra is the mass of

the mobile robot and u is the input (force) which is bounded. The velocity v(s) is bounded

at every instant to guarantee the nonslipping conditions [K.K91]. T is the final time of the

nominal plan (i.e &(s f) = T). Notice that lhe criterion is simply convex, but not strictly.

This means that the optimal solution is not necessarily unique.

3 Optimal Control Strategy (OCS)

The problem is posed as an optimal control problem with constraints on the states (hard)

and the control (soft). The analytic solution of such problems is a formidable problem. Thus

a numerical solution is sought. However in order to investigate the convergence performance

of such an algorithm, the properties of the feasible control space should be investigated.

3.1 Feasible Controls Space

The feasible controls space is defined as

= u E L2(O,s],N)/9 (8- 11) are satisfied (13)

Its convexity properties should be investigated for numerical convergence purposes.

Obviously (9) is convex since for all inputs Ul, u2 E L2(0, s], J¢) that are bounded (i.e

Ul(a),u2(a) E [-(/2, UI], a E [0, s/I) it is obvious that its convex combination u = A.ux +

(1 - £). u2 is bounded (i.e u(a) E [-U2, UI]. cr • [0,sl]).

4
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Figure 2: Feasible Velocities Space

The final equality constraint (8) can be imposed using inequalities. Consider as upper

and lower velocity bounds the two velocity arcs starting from (sl, v.f) and going backwards

with input - U2, U1 until they meet v_t,b(S), r(_) = e respectively. Thus vmax(s) and vmi,_(s)

are constructed.

This is demonstrated in figure 2. Thus, a new set of inequalities

0 < Vmin(S) <_ r(S) < Vm_(S) (14)

is used to satisfy (8,10). Due to the assumption about motion on a horizontal plane, the

total energy £ of the mobile robot at every instant, is equal to its Kinematic energy. Thus,

1(m+ [. #(,_)).v_(_) (151

where f(s) is the curvature of the path r(s). Integrating the second of the state equations

the kinematic energy at a point s is given by

(,_+r.#(_)).,,_(_)=_ o2

where,_(a)_ L_(0,s;,_).Thus,

v2(s ) = (m-I- [./2(s0)) 2 f_ u(a).da (17)
(_ + _r.#(_)) "v_(_o)+ (m + r. #(_))
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If velocities vl(s), v2(s)

v_(s) = (m + I. f:(so))
(m + I. f2(s))

v_(s)= (m + I. f2(8o))
(m + :. p(s))

satisfy (14), then velocity v(s)

:(_) = (m+ [./2(_0))
(m + I. p(s))

2f: 0 Ul(O.)" do

•d(_o)+ _¥7:7_i_

2f:0_2(o)"do.
•4(_o)+ _:/7:7_i_

(18)

(19)

2f:0_(°) cO. (20)
• %2(80) -I- (m -1-I. f2(s))

where u(o.) = A. u,(a) + (1 - A). u2(a) a e [0, s], satisfies

v2(s) = A. v_(s)+ (1 - A). v_(s) (21)

an therefore it satisfies (14). Therefore (14) is convex.

Consider the sets

D = {(s, t)/d(s, t) - do <_ O} (22)

D_ zx {s/ ?t _ (s,t) e D} (23)

For a specific s, the Collision Times Set (time instants where collision is possible if the

robot is at position s) is defined as

Ct(s) _ {t/ 9 (s,t) 6 D} (24)

Since d(s,t) is continuous w.r.t both arguments, it can be easily proved that if a pair (sc, tc)

exists such that d(sc,tc) = 0 then Ct(s) is found to be non-empty and compact Vs 6 Ds.

Thus the following definitions are meaningful

tt(s) zx nfin Ct(s) (25)

t_(_) "= max C,(s) (26)

Notice that

t(s) _ t_(._)Vs_ D_ /

or I _ do - d(s,t) < 0 (27)t(s) < tt(s) Vs e D,

showing the sufficiency of those collision avoidance conditions. However, the necessity is

not true in general. This is demonstrated in figure 3(b). There it is obvious that Ct(so) =

{t/t <tt V tl <t <t2 Vt> t=}.

For safety purposes we are not interested in the interval [tl, t2]. Furthermore, in practice,

the conic section type of obstacle trajectories that result from the used estimation algorithm

[KS90a] will not give such intervals. Thus, it becomes obvious that the feasible space is
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decomposed in terms of the collision avoidance constraint in two: the first is the space of

decelerating plans where

> w c D. (2s)

and the second is space of accelerating plans where

t(s) < tt(s) Ys E P_ (29)

Therefore we will seek solutions of the optimal control problem in the following feasible

control spaces:

Deceleration Space

= u E L2(O, sI,R)/3 (9,14,28) are satisfied (30)

Acceleration Space

H_ _= {u • L2(O, s1,1t?)/ _ (9,14,29) are satisfied} (31)

Consider the following lemma:

Lemma .1 If

a) f(a),g(a) 6 C[O,1],

b)/(a),g(a)>O Va•[0, X]

c) f,g not effectively proportional and

d) s • [0, 1] fixed,

then M(A) : [0, 1] _ N defined by:

M(X) =_ _0 ' 1 da (32)_/A -f + (1- A)-g

is convez w.r.t, its argument X.

Proof." The proof is given in appendix.ll.

An input ul(s) • U_¢c results to vl(s) such that

_oS f ltl(s) = vl-(a) .da < tt(s) (33)

and u2(s) • H_¢_ results to v2(s) such that

_0sJ ' 1t2(s) = v2(a'--'_.da < tl(s) (34)

Their convex combination u(a) = A. ul(a) + (1 - A). u2(a) results to v(s) satisfying (21) i.e

v(s) = CA-v_(s) + (1 - A). v_(s) (35)

Because of Lemma .1 it is deduced that

_oS l it(s) = v(a---_.da < min{h(s),t2(s)} (_,) t(s) < h(s) (36)

Therefore H_ is convex.

Efforts to prove the same for LCd_ have not led to any result.

8
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3.2 Numerical Implementation

A closed form solution of the optimal control problem at hands is a formidable task. There-

fore a numerical solution was sought. The noulinear hard constraints (11,14) that can be

written in the vector form

> 0 c(.,.) e (37)

complicate the numerical solution. The approach of [Mar73] was used to approximate them

with equivalent soft constraints g(.,., .) E _,3 that satisfy

W> 0 (3s)

In appendix the approach of [Mar73] is presented.

If we incorporate the control input constraints into g(.,., .) then g(.,., .) E _5.

To enhance numerical convergence the penalty functions approach was adopted. Thus,

criterion (12) was changed to

J: =l(t(sl)-T)2 + _-_rJ'cj(x(s),s)+ 7)j(x(s),s).u(s) .ds (39)
0 j----1

where rj j = 1,..., 5 are very small positive constants.

Several attempts to solve the problem with shooting and matching techniques proved to

be futile. The only approach that proved to be successful was the Nonlinear Program-

ming approach.

The numerical solution of the above problem requires the descretization of the domain
$!

[0, sf] in N steps of uniform length As = _.creatmg a grid of N + 1 points (O,s_,...,sg =

sy}. The corresponding N control inputs {UO, Ul,...,UN_I} , N time instants {tl,t2,...,ty}

and N velocities {Vl, v2, ...,vg}, where ui = _,(_ = i.A_), ti = t(s = i.As), vi = v(s = i.As),

are the unknowns of the problem.

The nonlinear programming problem is stated, in the form:

min_e_3 N F(x)

s.t l_ < x < r_

A . x = O (40)
ct(x) = 0

< 0

where

x = [u0, ul,..., UN-l, tl, t2,..., ty, v_, v_, ..., V_v]T is the vector of unknowns (Notice that the

velocity components of this vector are the squares of the velocities. This is going to be

justified later),and

F(x) - 21-(tN -- T) 2 + _No: (_j=l rj c,(_(_,)._,)+v,(_O,)._,)-,4,,))" (_'+: - ,si),
where T is the total time in the nominal plan.
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The bounds of the vector of unknowns z are :

For ui:

- V2 <_ ui < U1 i = 0,1,...,N -1 (41)

which actually is constraint (9).

For v_:

v_i_(si) <_ v_ < v2,_(si) i= 1,...,U (42)

representing (14).

The linear equality constraints (A • x = 0) are

(m+ f .f2(si)).v_-(m+ I.f2(si-1))'v__,-2"(si-si-a)'ui =0 i= l,...,U (43)

representing the dynamics of the system as given by the second state equation in (5). Notice

that because we use v_ in the vector of unknowns x, this is a linear constraint otherwise, it

would be a nonlinear one.

The nonlinear equality constraints (ct(z) = 0) are

8i+1 -- _i = 0 i = 0,...,N- 1 (44)
t,+,-t,

2

representing the first of the state equations (15).

Finally, the nonlinear inequality constraints (cd(x) _< 0) are

do - d(si,ti) _< 0 i = 1,...,N (45)

which actually represent the collision avoidance constraint (11).

A sequential quadratic programming method (SQP), (see for example [Pow83]),

in which the search direction is a solution of a quadratic programming problem was adopted.

The NAG Fortran Library Routine E04UCF actually implements the above algorithm and

it was used to obtain the numerical results of the case study chapter.

Notice that SQP is a gradient search method which is a local method. If the initial guess

x ° of the algorithm corresponds to an input vector u ° that is in b/_ce then the algorithm is

going to converge to x* corresponding to u" E b/_e. Similarly, if the initial guess x ° of the

algorithm corresponds to an input vector u ° that is in Ua_ then the algorithm is going to

converge to x* corresponding to u* E b/d_c. An efficient method to obtain initial, and very

close to optimal guesses either in la¢_ or in L/,t_c is provided by the Minimum Interference

Strategy (MIS) [KS91]. The Accelerating MIS provides a first guess x ° E L/_ee, while the

Decelerating MIS provides a first guess x ° E b/d_c.

SQP requires the derivatives of both the cost criterion and the constraints, w.r.t x. An

analytical form of those derivatives can be easily obtained except for constraint (45) that

involves the distance function d(s,t). This is well known to be continuous but not contin-

uously differentiable [GJ85]. A way to bypass this difficulty is to predict the "singularity"

points where the derivative is discontinuous and interpolate locally with a sigmoid function.

This approach was used in the case study and did not create any numerical problems.

l0
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The algorithm is for the Optimal Control Strategy is:

OCS Algorithm

STEP1: Find an initial input guess u ° = {u°,u °,...,u_v_l} E Uacc and the corresponding

time and velocity trajectories t o {to to,...,tOg}, v o o o= = {Vl, v2,... , V_v}. Formu-

late the initial guess vector x °.

* providing * * and *STEP2: Feed x ° into SQP and let it converge to X_cc, u_cc,t_c c Vacc.

STEP3: If Jacc = (tacc(Sg) -- T) 2 is very small, then an optimal solution has been found.

STOP;

Otherwise continue.

STEP4: Find initial input guess u ° 0 o= {u 0. ul,..., U_v_l} e //dec and the corresponding

time and velocity trajectories t o = {t o, t 0, ..., toy} ' vo = {vl,Ov2,o ...,VN}.O Formu-

late the initial guess vector x °.

STEP5: Feed x ° into SQP and let it converge to x_, providing U*d_,t*d__ and v_.

STEP6: If J_ = (t_¢_(SN) -- T) 2 is very small, then an optimal solution has been found.

STOP;

Otherwise compare J_c¢ and Jd_ and chose optimal solution.

4 Simulation Results

In this section a case study is presented. A mobile robot and a moving obstacle with

geometric shapes, moving in the same environment 4. The shape of both the mobile robot

and the moving obstacle is rectangle with dimensions 0.3m × 0.52m and 0.28m x 0.28m,

respectively. The scenario is that when the mobile robot is about to start moving, it detects

the obstacle,estimates its kinematic parameters

x0 = 4.0 m

vx = 0.04 m/sec

a_ = 0.094 m/sec 2

yo = 7.0m

vy = -0.075 re�see

vy = -0.041 m/sec 2

and predicts a collision under the current plan at t¢ = 6.67 sec.

The mobile robot has parameters:

Mass (M) : 60 Kg.

Inertia (I) : 32 Kg.m 2

Maximum Accelerating Force (U1) : 140 N

Minimum Decelerating Force (U2) : -60 N

Maximum Velocity (Vm_) : 8 m/.sec 2

Wheel-floor friction coefficient (r/) : -,,0.3

has the task to go from configuration A to configuration B within T = 12.1753 sec. An off-

line path planning stage is done and a path r(.s) 0 < s < s] with total length s! _, 14.60 m

is computed. The parameters of r(s) are indicated on figure 4.

Initial and final velocities are zero (VA = VB = 0).

11
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The NAG Fortran Library Routine E04UCF was used to solve the nonlinear program-

ming problem. The whole segment was divided in 111 segments. The first guesses required

for the accelerating OCS (u E/d_c) and the decelerating OCS (u E Udec), were given by

AMIS and DMIS respectively [KS91].

The resulting velocity profiles from the Accelerating OCS and the Decelerating OCS are

plotted with solid line on figures 5 and 6 respectively.

The time functions for Accelerating OCS (b,_¢(s)), Decelerating OCS (ta,_(s)) and the

nominal plan (t,wm(s) are plotted on figure 7. The motion time of the nominal plan is

T = 12.1753 sec, while Tacc = 12.1753 sec and Tdec = 12.2782 sec.

Tile optimal control formulation although mathematically sound suffers from computa-

tional complexity that prevents its on-line use. However the initial guess provided by MIS

is very close to optimal and therefore the convergence is speeded up. Issues related to a

parallel asynchronous implementation of the above algorithm for multiprocessor environ-

ments are of our immediate interest. Furthermore, the issue of sensitivity of solution to the

estimates of the kinematic parameters of the moving object has to be investigated. Prelim-

inary results show that the present algorithm can be updated very efficiently. This is a very

attractive feature because the initial penalty of computation is not frequently repeated.
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APPENDIX

Proof of Lemma

Since f(o'), g(o) E C[O, 1]

fO$
dM(A) _ 1 [A. f +

dA 2
- _). g]-]. (g - f). d_ (46)

and

dX 2

From (a),(c) _ > 0, thus M(A)is convex|.

Method of Martensson

In brief, this method suggests that a hard constraint of the form

d2M(A)
_ 3rls[A.]+ 1-A).g]-_.(g-f)2.da

do

\

G(_(_), _) > 0

(47)

(48)

can be arbitrarily closely approximated by

g(x(s), u(s), s) = G (1)(x(s), u(s), s) + al. G (t- 1)(x(s), u(s), s) +... + a,.G(x(s), s) >__0 (49)

where

G(0(_(_), u(,),,) = = OG(i-1)(x(s), s)cIG{i-1)(x(s)'s) oG(i-1)(x(s)'s) . z' + (50)
ds Oz Os

14



u

. = =

_==

U

s _

L •

H

by choosing constants c_i E _, i = 1,... l to be the coefficients of a stable polynomial with

real roots

A1 + at • Al-l + ...+ al = 0. (51)

The more stable is the polynomial the better is the approximation of the origina] constraints.

Notice that because of the structure (5) of the state equations, function g(.,., .) is going to

be of the form

g(x(s),u(s),s) = C(x,s) + •u(s) (52)

The order l is chosen such that in (50) a factor containing u explicitly exists.|.
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